An integrated field-laboratory investigation of the effects of low oxygen and pH on North Pacific krill (Euphausia pacifica)

Krill are abundant and ecologically important zooplankton that inhabit dynamic environments characterized by strong natural variability, but global ocean change is shifting the range of conditions that they experience. Laboratory tests reveal that krill are sensitive to ocean acidification despite residing in naturally low pH areas, showing the importance of modulating factors for determining their responses. This study combines laboratory manipulations with field observations across a strong natural water chemistry gradient in Puget Sound, Washington, USA to investigate the effects of pH and oxygen on adult female North Pacific krill, Euphausia pacifica. Enzyme activities of the Electron Transport System (ETS) and aminoacyl-tRNA synthetases (AARS) were used as indices of zooplankton metabolism and growth, respectively, and were paired with traditional incubation methods. Acclimation to pH and oxygen conditions in the laboratory did not reveal effects on respiration rate, ETS, or AARS activity of krill. However, field observations showed that respiratory potential, as estimated by ETS activity, decreased with decreasing oxygen, declining 9% (95% confidence interval 2.5–15%) over the range of conditions we observed (3.9–8.1 mg O2 L−1). This reduction would depress the metabolic potential of krill in areas of stressful conditions (concurrent low pH), though krill also displayed a high degree of inter-individual variability. Although differences in age structure suggest different patterns of recruitment between E. pacifica populations in areas with stressful conditions and those without, populations persist at stressful sites. Lower temperature of waters with low oxygen and pH, as well as high food concentrations, may contribute to these populations’ success.

McLaskey A. K. & Keister J. E., 2021. An integrated field-laboratory investigation of the effects of low oxygen and pH on North Pacific krill (Euphausia pacifica). Marine Biology 168: 43. doi: 10.1007/s00227-021-03845-8. Article (subscription required).

Original post: