Transcriptomic response to decreased pH in adult, larval and juvenile red king crab, Paralithodes camtschaticus, and interactive effects of pH and temperature on juveniles

Ocean warming and acidification are expected to influence the biology of the ecologically and economically important red king crab, Paralithodes camtschaticus. We investigated transcriptome responses of adult, larval and juvenile red king crab to assess sensitivity to reduced pH and elevated temperature. In adults, gill tissue (but not heart or cuticle) responded to reduced pH by differentially regulating many genes involved in metabolic, membrane and cuticular processes, but not ionic or acid/base regulation. In larval crabs, we found little evidence for a strong transcriptomic response to pH, but did observe large differences in the transcriptomes of newly hatched and one-week old larvae. In juvenile crabs, we found that there was a strong transcriptomic response to temperature across all pH conditions, but that only extreme low pH caused transcriptomic shifts. Most of the genes in juveniles that were differentially expressed were for cuticular and calcification processes. While inferences regarding the specific biological responses associated with changes in gene expression are likely to change as resources for red king crab genomics enabled studies continue to improve (i.e. better assemblies and annotation), our inferences about general sensitivities to temperature and pH across the life stages of red king crab are robust and unlikely to shift. Overall, our data suggest that red king crab are more sensitive to warming than acidification, and that responses to acidification at the transcriptomic level occur at different levels of pH across life stages, with juveniles being less pH sensitive than adults.

Stillman J. H., Fay S. A., Ahmad S. M., Swiney K. M. & Foy R. J., in press. Transcriptomic response to decreased pH in adult, larval and juvenile red king crab, Paralithodes camtschaticus, and interactive effects of pH and temperature on juveniles. Journal of the Marine Biological Association of the United Kingdom. Article (subscription required).


Original post: https://news-oceanacidification-icc.org/