Oysters and eelgrass: potential partners in a high pCO2 ocean

Authors

Maya L. Groner, Colleen A. Burge, Ruth Cox, Natalie D. Rivlin, Mo Turner, Kathryn L. Van Alstyne, Sandy Wyllie‐Echeverria, John Bucci, Philip Staudigel, Carolyn S. Friedman

 

Abstract
Climate change is affecting the health and physiology of marine organisms and altering species interactions. Ocean acidification (OA) threatens calcifying organisms such as the Pacific oyster, Crassostrea gigas. In contrast, seagrasses, such as the eelgrass Zostera marina, can benefit from the increase in available carbon for photosynthesis found at a lower seawater pH. Seagrasses can remove dissolved inorganic carbon from OA environments, creating local daytime pH refugia. Pacific oysters may improve the health of eelgrass by filtering out pathogens such as Labyrinthula zosterae (LZ), which causes eelgrass wasting disease (EWD). We examined how co‐culture of eelgrass ramets and juvenile oysters affected the health and growth of eelgrass and the mass of oysters under different pCO2 exposures. In Phase I, each species was cultured alone or in co‐culture at 12°C across ambient, medium, and high pCO2 conditions, (656, 1,158 and 1,606 μatm pCO2, respectively). Under high pCO2, eelgrass grew faster and had less severe EWD (contracted in the field prior to the experiment). Co‐culture with oysters also reduced the severity of EWD. While the presence of eelgrass decreased daytime pCO2, this reduction was not substantial enough to ameliorate the negative impact of high pCO2 on oyster mass. In Phase II, eelgrass alone or oysters and eelgrass in co‐culture were held at 15°C under ambient and high pCO2 conditions, (488 and 2,013 μatm pCO2, respectively). Half of the replicates were challenged with cultured LZ. Concentrations of defensive compounds in eelgrass (total phenolics and tannins), were altered by LZ exposure and pCO2 treatments. Greater pathogen loads and increased EWD severity were detected in LZ exposed eelgrass ramets; EWD severity was reduced at high relative to low pCO2. Oyster presence did not influence pathogen load or EWD severity; high LZ concentrations in experimental treatments may have masked the effect of this treatment. Collectively, these results indicate that, when exposed to natural concentrations of LZ under high pCO2 conditions, eelgrass can benefit from co‐culture with oysters. Further experimentation is necessary to quantify how oysters may benefit from co‐culture with eelgrass, examine these interactions in the field and quantify context‐dependency.

Supporting Information

ecy2393-sup-0001-AppendixS1.pdf PDF document, 152.7 KB

Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.


Original post: https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/ecy.2393

image_pdfimage_print