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Abstract
Ocean acidification is a global issue with particular regional significance in the California Current
System, where social, economic, and ecological impacts are already occurring. Although ocean
acidification is a concern that unifies the entire West Coast region, managing for this phenom-
enon at a regional scale is complex and further complicated by the large scale and dynamic nature
of the region. Currently, data collection relevant to ocean acidification on the West Coast is pie-
cemeal, and cannot capture the primary sources of variability in ocean acidification through time
and across the region, hindering collaboration among regional managers. We developed a tool to
analyze gaps in the West Coast ocean acidification monitoring network. We describe this tool
and discuss how it can enable scientists and marine managers in the California Current System to
fill information gaps and better understand and thus respond to ocean acidification through the
implementation of management solutions at the local level.

Keywords
Aragonite saturation, California Current System, gap analysis, monitoring network, ocean acidifi-
cation, ocean observing

Introduction

In addition to contributing to climate change, anthropogenic carbon dioxide emis-
sions have been implicated in ocean acidification (OA): ‘‘the other CO2 problem.’’1
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When the ocean absorbs carbon dioxide from the atmosphere, the carbon dioxide
reacts with water to form carbonic acid, which is further dissociated into bicarbo-
nate and carbonate ions in a chain of equilibrium reactions that each generate a
hydrogen ion (proton). The availability of bicarbonate and calcium carbonate, as
either calcite or aragonite, is regulated by pH. As waters acidify with increasing
partial pressure of CO2 (pCO2), the saturation states of calcite and aragonite
decrease.2 Globally, the average ocean surface pH has declined by 0.1 unit (from
8.2 to 8.1) since pre-industrial times, representing a 26% increase in hydrogen ion
concentration in seawater.2 Further increases in atmospheric CO2 will, in turn, fur-
ther increase OA; for example, surface pH is projected to decline by an additional
0.3–0.4 units under the IPCC ‘‘business as usual’’ scenario.2

The West Coast of the United States is predicted to experience deleterious effects
of ocean acidification (OA) sooner than many coastal regions worldwide.3 Ocean
dynamics in the region are driven by the California Current System, where upwel-
ling brings deep, high pCO2 water to the surface ocean, creating conditions that are
naturally more acidic relative to other coastlines around the world.3,4 In addition to
anthropogenic CO2 emissions and upwelling currents, elevated acidification in the
California Current System is due to coastal erosion and runoff—all of which con-
tribute CO2 and nutrients to surface waters.5

This OA-related decline in calcite and aragonite saturation state in coastal
waters gravely threatens marine biodiversity. Aragonite is the most soluble form of
calcium carbonate, and aragonite saturation state of water determines how much
aragonite will dissolve in water. Many calcifying organisms produce aragonite-
based shells and skeletons. Thus, organisms such as crustaceans, corals, echino-
derms, mollusks, and planktonic calcifiers, like foraminifera and pteropods,
respond negatively to decreases in aragonite saturation state.6–9 These effects vary
across species, but include shell dissolution, reduced growth rates, reduced fertility,
or even mortality for some plankton.6 While these calcifying organisms tend to be
small in size and receive less conservation attention than larger fauna, they under-
pin many food webs in the region; a decline in marine calcifying organisms could
have ripple effects on entire communities and ecosystems.6,9,10

Beyond the ecological impacts of OA on calcifying organisms and their interre-
lated food webs, OA may wield significant economic impacts by placing additional
pressures on fished species. OA impacts have been estimated for several important
fishery species. For example, global costs of OA on the mollusk market are pre-
dicted to be more than $100 billion by 2100, assuming increasing demand and
income growth.11 Regionally, larval production at oyster hatcheries on the US
West Coast has suffered significant impacts due to declines in growth and survival
resulting from acidified waters,12 threatening direct economic loss, as well as
impacts to jobs. OA also threatens the cultural heritage and traditional food
sources of many Native American tribes on the Pacific Coast, and impacts on
shellfish affect the culture, economy, and diets of Native Americans.13

The scale of this issue requires a robust contingency of stakeholders working in
unity toward common efforts and integrated approaches at the ecosystem and
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regional scale; and to facilitate regional management of OA, scientists, federal and
state policy-makers, the tribal leaders convened in 2016 to form the West Coast
Ocean Acidification and Hypoxia (OAH; hypoxia, or low dissolved oxygen, is com-
monly found to co-occur with acidification and the two are often grouped together)
Science Taskforce (‘‘Taskforce’’) as mandated by California State Assembly Bill
2139. The Taskforce worked closely with the California Ocean Protection Council
to compile a monitoring inventory (OAH Inventory) with the goal of integrating
OA-monitoring efforts from a multitude of research, agency, and nonprofit moni-
toring projects to establish a more cohesive network. A cohesive network will then
enable shared learning across stakeholders, increased collaboration, and improve-
ment of predictive models. As of April 2018, the inventory contained over 3500
records of existing datasets related to OAH, referencing data collected over the past
70 years from Mexico to Alaska.

Using this inventory to improve upon the West Coast, OA-monitoring network
is a key step in improving management practices. With increased collaboration and
improved understanding of spatial and temporal trends in OA, managers will be
able to develop regional tactics to address the problem of OA in the California
Current System more effectively. Courses of action may include but are not limited
to reducing nutrient input through stakeholder involvement and updated water
quality criteria,14 implementing blue carbon techniques through submerged aquatic
vegetation,15 and on a broader scale, encouraging community reduction of green-
house gas emissions.1 An improved understanding of spatial and temporal trends
of OA on the West Coast, enabled by a cohesive monitoring network, will facilitate
prioritization of local management solutions.

Core principles of an ideal OA-monitoring network in the California Current
System have been established.16 These principles include monitoring of aragonite
saturation state, collecting data at a temporal frequency that captures changes in
aragonite saturation state, and ensuring public access to data. However, historic
and current monitoring sites were established for specific research or management
objectives and not with the goal of creating a regional monitoring network. Given
the current state of West Coast OA monitoring, not all monitoring efforts provide
the same level of quality control or data relevant to management needs. Data col-
lection varies in the equipment used, the parameters measured, and the frequency
of data collection. In situ sensors, moorings, and buoys can give temporally
resolved data, also with varying levels of precision, but give little information on
spatial patterns. These types of monitoring are common along the coast, where
they can be more easily accessed for service, repair, and collection. Gliders and
cruises can cover great distances and give more information on spatial patterns,
particularly offshore, but are difficult to repeat and thus do not give information
on temporal trends. Acidification can be measured in many different ways, depend-
ing on the questions being asked and the ecosystem response being evaluated. It is
commonly measured with pH, with records on the West Coast beginning as early
as 1949.17 However, pH does not have the same direct implications on biology that
aragonite saturation state does. For this reason, aragonite saturation has been
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identified as the ideal metric of OA in the California Current System,16 though it is
more expensive and difficult to derive because it requires making a calculation
using measurements of two carbonate parameters as opposed to just measuring
one, as is the case with pH. Other common parameters measured include pCO2 of
surface water, pCO2 of air, dissolved inorganic carbon (DIC), and total alkalinity
(TA). Each of these parameters measures one part of the carbonate system, but
alone does not yield information on the saturation state of aragonite. Another
great challenge in monitoring and managing OA is that species often respond to
short-term, acute OA events, yet monitoring is rarely able to capture these due to
insufficient spatial and temporal resolution.

High frequency measurements that enable calculation of aragonite saturation
state are spatially sparse and so a meaningful interpolation of typical conditions is
impossible. Observations that have adequate spatial coverage are from cruises, and
can thus create a snapshot in time of aragonite saturation state. These types of
cruise data have been used to determine aragonite saturation state in the California
Current System during a narrow time frame,18 but acidification conditions depend
strongly on seasonal cycles, and so such a snapshot does not necessarily capture
typical conditions. Due to this lack of spatially and temporally resolved carbonate
system data and the trade-off between temporal and spatial resolution, high-
resolution modeling of the carbonate system has become an active area of
research.19,20 However, the development of physics-based models relies on evalua-
tion of model performance, which in turn requires observational data. Thus,
whether using observational data or model outputs to understand acidification
conditions in the California Current System, high quality, highly resolved data are
required.

The purpose of our study is to quantify monitoring gaps in an OA-monitoring
network and then use that framework to identify locations within the US West
Coast region (California, Oregon, and Washington) where existing monitoring
efforts are inadequate to characterize aragonite saturation state. We also conducted
focused analyses to characterize the different types of monitoring gaps in the West
Coast region (aragonite saturation data gaps and high-frequency monitoring gaps)
to help managers meet the goals of the Taskforce. This analysis is based on the
existing monitoring network, but could be applied to any given network of moni-
toring assets to fill gaps, and could be used iteratively as an optimization tool to
design a new network.

This work builds on a wide and varied history of analyzing gaps in monitoring
networks. These analyses have been done in the fields of water and air quality,
meteorology, and oceanography, among others.21–24 For example, marine-
monitoring networks have been analyzed to find gaps in marine-life monitoring,25

in monitoring of habitat types,26 and in a monitoring network for harmful algal
blooms.27 All of these studies employed different methods depending on the goal
and the data available. One study uses satellite data to determine cross-shore dec-
orrelation scales and in situ moorings to quantify temporal decorrelation at five
different locations on the coast, and quantifies the performance of a sparse
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monitoring network based on the resulting covariance matrix.27 Other studies use
metadata of existing monitoring (i.e. type of information collected and location) to
analyze data gaps based purely on regional distribution of and geographic distance
to monitoring.25,26

We developed methods taking into consideration what has already been done
and how our data and goals fit into the existing body of literature: similar to the
study by Frolov et al.,27 we are searching for gaps in a network that measures a
chemically and biologically driven phenomenon in the ocean (the balance between
primary production and respiration is a strong control on ocean acidity); similar to
the study by Asch and Turgeon26 and Kot et al.,25 our analysis finds gaps in an
extensive network, and relies on metadata of the network as opposed to data col-
lected at each monitoring site. Thus, our analysis seeks an approach that falls
within this spectrum: with a lack of highly resolved spatial data, and with limited
access to time-series data, how can we improve on the existing, but non-cohesive
OA-monitoring network while considering oceanographic conditions across the
region?

Methods

Overview

Our analysis locates the best site for the next monitoring asset given the existing
monitoring network, thereby filling in monitoring network gaps one asset at a time,
based on the sites that already are in place. In this analysis, we utilized methods
that fall in the middle of the spectrum defined by other works in this realm (see
study by Asch and Turgeon26 for a more simplistic approach, and study by Frolov
et al.27 for a more involved approach). These decisions were made due to the con-
straints of the data we used (spatial metadata as opposed to time-series and satellite
data) as well as the goal of working with policymakers and non-scientist end users.
The result is an analysis that provides specific spatial information on relative sam-
pling of OA on the West Coast.

Monitoring networks are geographic objects, and it might seem that the ideal
network would be evenly spaced across the ocean. However, the ocean is not uni-
form: some places in the ocean are more dynamic than others, with change driven
by both vertical and horizontal movement of properties on short timescales. This
effect can be illustrated with an example from the Santa Barbara Channel. A corre-
lation matrix of aragonite saturation state time-series data in the Santa Barbara
Coastal Long Term Ecological Research Project (SBC LTER) (Table 1) reveals
correlations between locations that are disproportional to distances between loca-
tions; a negative correlation exists between Mohawk Reef28 and Santa Barbara
Harbor,29 which are less than 5 km apart, while the strongest correlation is between
Alegria30 and Arroyo Quemado Reefs,31 which are 16 km apart (Table 1). This
example shows quantitatively that considering geographic distance alone will not
optimize a monitoring network, especially at a large regional scale.
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Thus, where the ocean is highly dynamic, an ideal monitoring network will have
more closely clustered assets than in places that are more static.32 Consideration of
variance is common in oceanography,27 but has not been considered in all previous
marine-monitoring network gap analyses.25,26 In the absence of highly resolved
time series and spatial data that are representative of our study region, we devel-
oped a method to gain a relative index of spatial variance in order to take horizon-
tal oceanographic heterogeneity into consideration within the mixed layer. To
achieve this, we combined the spatial variance of estimated aragonite saturation
state with geographic distance, and used this metric to recommend locations for
additional or enhanced monitoring. The code and all publicly accessible datasets
used in this project are freely available online at resilienseas.github.io.

Existing monitoring network

Our primary data source was the West Coast OAH Monitoring Inventory (down-
loaded on 22 February 2018), a dataset containing metadata about each monitoring
asset. Monitoring assets include survey areas, cruise stations, gliders, sample sites,
shore-side sensors, and moorings. The dataset includes information describing the
OA parameters collected, the frequency and duration of collection, and the moni-
toring locations. OA parameters collected include pCO2 of surface water, pCO2 of
air, pH, DIC, TA, carbonate ion, and dissolved oxygen. While we had access to the
inventory containing metadata on West Coast oceanographic monitoring, we did
not have access to all the data collected at each monitoring asset, because assets
varied in the degree of open access. Some assets included in the inventory produce
publicly available data; some release recent observations while keeping long-term
records private, and data from some existing assets are only available in aggregate
upon request at the discretion of the contributor. These varying levels of privacy
are due to the goals of the organization collecting data. For example, the

Table 1. A correlation matrix of aragonite saturation state time series data from the SBC LTER:
Alegria Reef (2120.28998, 34.46085), Arroyo Quemado (2120.11965, 34.46495), Mohawk Reef
(2119.73012, 34.39323), and Santa Barbara Harbor (2119.68493, 34.40934).

Alegria
Reef

Arroyo
Quemado Reef

Mohawk
Reef

Santa Barbara
Harbor

Alegria Reef 1.00 16 52 56
Arroyo Quemado Reef 0.39 1.00 37 40
Mohawk Reef 0.11 0.14 1.00 5
Santa Barbara Harbor 0.03 0.33 20.07 1.00

Aragonite saturation state data were collected at 20-min intervals between 2011 and 2014 at sites between

Point Conception and downtown Santa Barbara. The correlation matrix was constructed with pairwise

comparisons. Seasonal trends were removed by subtracting aggregated monthly means from measured

values. Correlation values are below the bolded diagonal values and distances between sites in kilometers

are above the bolded diagonal values.
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monitoring inventory includes data collected by scientific researchers, some of
which are publicly available, some of which are available by request, and some of
which are embargoed until a future publication; the monitoring inventory also
includes data collected by shellfish hatcheries, which tend to have excellent time
series of aragonite saturation state, but may consider water quality data proprie-
tary, and thus may not make the data public except upon request and at their own
discretion. We included all assets in the inventory in this analysis, regardless of pri-
vacy standards. The assets that do produce publicly available long-term records of
aragonite saturation state are mostly in the SBC LTER Project, and are thus not
representative of the entire coast. We used the metadata to determine whether or
not each asset was ‘‘carbonate complete,’’ meaning the asset collects parameters
needed to determine aragonite saturation state (at least two of pH, TA, DIC, and
pCO2).

Estimating aragonite saturation state

We based our analysis on the metric of aragonite saturation state, which has been
identified as a gold standard of an ideal OA-monitoring network.16 The variables
needed to calculate aragonite saturation state are not yet measured at a sufficient
spatio-temporal resolution to identify highly variable locations across the study
region. We used temperature (T) and dissolved oxygen (O2) as proxies, because
they are strongly positively correlated with aragonite saturation state.33,34 At a
subregional scale, empirically derived linear models predict aragonite saturation
state based on temperature and dissolved oxygen measurements.33,34 Alin et al.34

developed an empirical relationship to predict aragonite saturation state in the
southern California Current System (defined as the region between Monterey Bay,
CA and Punta Eugenia, Mexico), with a final R2 value of 0.988 (see Table 2), and
Juranek et al.33 developed a similar relationship to predict aragonite saturation
state in the Pacific Northwest (defined as the Oregon Coast and the outer coast of
Washington), with a final R2 value of 0.987 (see Table 3).

Our analysis utilized equation (2) from Alin et al.34 in the southern part of our
study region

Table 2. Coefficients and parameters from the empirical model developed by Alin et al.34

Symbol Value

a0 1.112 6 0.003
a1 9.59 3 10226 1.6 3 1023

a2 3.54 3 10236 4.9 3 1025

a3 5.91 3 10246 1.1 3 1025

O2, r 138.46 mmol/kg
Tr 10.28�C
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Oarag =a0 +a1 O2 �O2, rð Þ+a2 T � Trð Þ+a3 T � Trð Þ3 O2 �O2, rð Þ ð1Þ

and equation (3) from Juranek et al.33 in the northern part of the study region

Oarag =a0 +a1 O2 �O2, rð Þ+a2(T � Tr)3(O2 �O2, r) ð2Þ

In both empirical relationships, Tr and O2r are reference values for temperature
and dissolved oxygen, respectively.

We extracted sea surface temperature and in situ dissolved oxygen data from the
Bio-ORACLE global dataset.35 Since its initial publication in 2012, Bio-ORACLE
data have been utilized extensively in published literature.36 All parameters are
available at a 9.2 km2 resolution. Mean sea surface temperature in Bio-ORACLE
is derived from monthly Aqua-MODIS climatologies from 2002 to 2009.37 Mean
dissolved oxygen in Bio-ORACLE is derived from 5,40,582 in situ measurements
from the 2009 World Ocean Database.38 The Bio-ORACLE dissolved oxygen layer
was created from a data interpolating variational analysis, a method which has
been used previously in oceanographic records.39–41

Both Juranek et al.33 and Alin et al.34 note that their models should be used with
in situ measurements, below 30 m and 15 m depth, respectively, of dissolved oxygen
and temperature as opposed to sea surface measurements, in order to be removed
from atmospheric influence. The dissolved oxygen data from Bio-ORACLE are in
situ measurements, but the sea surface temperature data are remotely sensed at the
surface of the ocean. To account for differences between temperature measured at
the sea surface and below the mixed layer, we subtracted 0.7�C from sea surface
temperature, which is in the range of commonly used differences between tempera-
ture at the surface and below the mixed layer,42 and was chosen to achieve greatest
agreement with observational data.34

Temperature and oxygen data were loaded into R (version 3.4.3)43 using the
‘‘smdpredictors’’ package,44 projected to North American Datum 83 California
Teale Albers, and cropped to our study region, identified by the bounding box of
NAD 83 coordinates (250000, 340000, 2600000, 1210000). Because both the
Juranek et al.33 and Alin et al.34 empirical relationships were developed for the
coastal ocean and have not been validated for estuarine regions where other sources
of DIC and TA may cause the linear relationships to change due to freshwater and
industrial sources of carbon, we removed Puget Sound and San Francisco Bay from
our analysis.

Table 3. Coefficients and parameters from the empirical model developed by Juranek et al.33

Symbol Value

a0 9.242 3 10216 4.4 3 1023

a1 4.492 3 10236 5.0 3 1025

a2 9.40 3 10246 3.4 3 1025

O2, r 140 mmol/kg
Tr 8�C
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We then created an aragonite saturation state raster following equation (1) for
the southern region and equation (2) for the northern region, using the mean sea
surface temperature and mean dissolved oxygen values from each ocean area. In
other words, the Alin model was used to predict aragonite saturation state from
waters off the southern border to waters off Davenport, CA, and the Juranek
model was used to predict aragonite saturation state from waters off the northern
border to waters off the California and Oregon border. To reduce the effect of the
abrupt change in aragonite saturation state at the boundary between the two mod-
els, the mean of the two model outputs was used to predict aragonite saturation
state in waters between the Point Mendocino, CA and Point Arena, CA. The mean
of both models and the Juranek model were averaged between Point Mendocino,
CA and Point St George, CA. The mean of both models and the Alin model were
averaged between Point Arena, CA and Point Montara, CA.

This depiction of aragonite saturation state (Figure 1) is consistent with other
work,20,45 with strongest acidification and upwelling conditions between Point
Conception, CA and Cape Blanco, OR, with a peak between Point Arena, CA and
Cape Mendocino, CA. We calculated a mean estimate of aragonite saturation state
across all California Cooperative Oceanic Fisheries Investigations (CalCOFI)
cruise stations of 2.245, which is consistent with the mean aragonite saturation
state estimated by Alin et al.34 from temperature and dissolved oxygen measure-
ments from CalCOFI cruise stations from 2005 to 2011 at 20 m depth (0.13% rela-
tive error). Our findings were also consistent with calculated aragonite saturation
state from carbonate parameters from CalCOFI cruises by Alin et al.34 We utilized
this relative error to account for uncertainty.

Utilizing the monitoring inventory

We used Voronoi polygons to divide the ocean into regions based on spatial prox-
imity to each monitoring asset, and to compare temperature and dissolved oxygen
at monitoring assets to the surrounding ocean conditions.46 This methodology
requires a set of points, and yields a set of polygons, each of which is centered
around a single point. Each polygon encompasses all the space that is closer to the
point within the shape than to any other point provided. Voronoi polygons are
thus a simple and useful way to divide our study region by proximity to each moni-
toring asset. We assigned a polygon identification number to each polygon and
then gridded the Voronoi polygons, while maintaining the polygon identification
numbers. We assigned the aragonite saturation state value of all points with the
same polygon identification number to the estimated aragonite saturation state
value of the cell containing the monitoring asset associated with that same polygon
identification number. This step resulted in a map of aragonite saturation state
across the West Coast estimated by the Juranek and Alin empirical linear model
outputs at each monitoring site. Thus, a monitoring network with 20 assets would
result in a map made up of 20 parcels of area, each with different values of arago-
nite saturation state based on the estimated value at the nearest monitoring asset.
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Figure 1. Aragonite saturation state in the study region as predicted by equations from Alin
et al.34 and Juranek et al.,33 using mean sea surface temperature of monthly climatologies from
2002 to 2009 derived from AQUAMODIS, and dissolved oxygen data from the 2009 World
Ocean Database, both obtained through Bio-ORACLE. Sea surface temperature was corrected
by 20.7� to account for the temperature difference between the surface and the base of the
mixed layer.42 Aragonite saturation state in the transition region from the California–Oregon
border to Davenport, CA was determined by the combinations of the two empirical models.
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We then used the empirical model outputs created using the continuous layers
of temperature and dissolved oxygen to find the difference between the empirical
model outputs at every location in the ocean and the empirical model outputs for
the nearest monitoring asset. In this calculation, we included uncertainty at both
locations, that is, if the aragonite saturation state is greater at a given location than
it is at the nearest monitoring site, we accounted for negative error in the first term
and positive error in the second term, and vice versa. The result is an aragonite
saturation state discrepancy value that describes differences in the acidification
conditions at any point on the West Coast as compared to these conditions at the
nearest data collection locations. In places where this value is high, a monitoring
asset is not describing OA conditions well. In places where this value is low, a mon-
itoring asset describes OA conditions very well.

To quantify this relationship between changing aragonite saturation state and
distance, the aragonite saturation state raster was used to create a semi-vario-
gram.47 The semi-variogram describes the expected value of the semi-variance
xk � xlð Þ2=2, which is half the squared discrepancy, as a function of the distance
between points l and k. This relationship expresses how the semi-variance of a
parameter increases with distance, revealing information on the spatial scale of
decorrelation of that parameter. In this analysis, we used it to determine the rela-
tionship between variance in aragonite saturation state and distance. The semi-
variogram revealed that the semi-variance in aragonite saturation state does not
saturate (i.e. the semi-variance increases continuously as distance increases), and
that a linear relationship describes this relationship (P� 0.05 and R2 = 0.995)

semivariance= 4:472310�8
� �

3distance: ð3Þ

The inverse of equation (3) was used to define ‘‘oceanographic distance’’

oceanographic distance=
xk�xlð Þ2

2

4:472310�8

 !
, ð4Þ

where xk and xl are the estimated aragonite saturations at locations k and l. For
each cell k, we set l as the location of the nearest monitoring asset and used equa-
tion (4) to calculate the oceanographic distance to that asset (Figure 2). This ocea-
nographic distance is a theoretical construct and is calculated to be able to combine
geographic distance and aragonite saturation discrepancy in one expression, in
order to determine the ‘‘effective distance’’ between two points in kilometers.

Quantifying gaps

We used a Euclidean distance approach to combine geographic distance and oceano-
graphic distance into a single ‘‘gap’’ layer. Thus, a gap in the network is a place where
oceanographic conditions are different from conditions at the nearest data collection
location, a place that is geographically far from the nearest data collection, or a place
with both of these characteristics. When combining these two, we weighted the
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Figure 2. Oceanographic distance to nearest monitoring in kilometers. Red regions have
acidifications that are different from conditions at the nearest monitoring asset, and thus are
effectively distant, and blue regions have acidification conditions that are similar to conditions at
the nearest monitoring asset, and thus are effectively close. Black dots represent monitoring
assets in the inventory where ocean acidification relevant information is being collected.
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oceanographic distance term by multiplying it by the unitless ratio of the maximum
value of geographic distance (210 km) and the maximum value of the oceanographic
distance (489 km). This was done to account for differences in scale between geo-
graphic distance and oceanographic distance, such that the effective distance to nearest
monitoring weights the two equally, rather than weighting oceanographic distance
more. The result describes the effective distance to the nearest monitoring asset in kilo-
meters, based on geographic distance and oceanographic conditions. Equation (5)
describes the equation we developed to describe gaps in OA-monitoring efforts

Effective distance to nearestmonitoring=
(geographic distance)2 +

maximumgeographic distance

maximumoceanographic distance
3oceanographic distance

� �2
s

ð5Þ

We repeated this analysis with subsets of the inventory to examine different
types of gaps, such as carbonate complete monitoring and high-frequency monitor-
ing (monitoring that collects data at least once per day). These focused gap analyses
describe two crucial elements of an ideal OA-monitoring network: direct measure-
ments of aragonite saturation state and a sufficient frequency to capture the scale
of temporal variation in acidification.16 We examined the highest-frequency OA
data available, collected by the Santa Barbara Channel LTER project, to under-
stand the nature of temporal variability of aragonite saturation state, and we found
temporal decorrelation scales with a 1/e significance level27 (i.e. the time at which
correlation reaches a level of 1/e, or 0.367) ranging between 1.2 and 1.4 days after
seasonal variation in aragonite saturation state was removed (Figure 3) . Thus, we

Figure 3. Temporal decorrelation scales with a 1/e significance level for aragonite saturation
state measurements in the Santa Barbara Channel LTER, corrected for seasonal variability. The
thick black line signifies the 1/e significance level. The sites are spread across a distance of 65 km
between the Gaviota Coast and the Santa Barbara Harbor. Correlation, shown by the colored
lines, drops below 1/e, or 0.367, just after 1 day at all four sites, suggesting decorrelation
timescales are tightly clustered between 1.2 and 1.4 days.
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defined ‘‘high frequency’’ as monitoring that occurs at least daily, in order to cap-
ture temporal decorrelation scales of aragonite saturation state. To generate the
carbonate complete gap analysis, we filtered the inventory to only analyze assets
that collect data for at least two carbonate complete parameters (the minimum nec-
essary to calculate aragonite saturation state).

Results

Gaps in the full inventory

With an estimate of average acidification conditions across the whole region, we can
locate monitoring gaps based on the entire inventory, including both past and pres-
ent monitoring efforts, to assess where future monitoring efforts should be focused.
The results of the gap analysis (Figure 4) revealed that the largest gaps in the West
Coast OA-monitoring network are offshore from Cape Blanco, OR, at the mouth of
San Francisco Bay, and at Dana Point, CA. Washington has greatest coverage.

Carbonate complete gaps

We analyzed gaps in the subset of the West Coast monitoring inventory that col-
lects two or more carbonate parameters, allowing the aragonite saturation state to
be calculated (Figure 5). The greatest gap is offshore from Santa Cruz, CA.
Additional gaps exist at Dana Point, CA and offshore from Cape Blanco, CA.

High-frequency gaps

We also analyzed gaps in the subset of the inventory that collects OA-relevant data
at least once per day (Figure 6). Results reveal nearshore gaps at Cape Meares,
OR, and the mouth of San Francisco Bay, with less severe gaps on the Bug Sur
Coast and at the California–Oregon border. Results also highlight that certain high
frequency monitoring assets are currently playing key roles in providing high-
frequency OA data. Specifically, the CCE01 and CCE02 moorings in Central
California, the OASIS Moorings in Monterey Bay, and the cabled and wire follow-
ing moorings in Oregon and Washington, are playing key roles in providing high
frequency offshore time series.

Discussion

OA in the California Current System is a seemingly intractable issue that unites
stakeholders across a variety of ecosystems along the West Coast. Though the root
cause of this problem is much larger than the scale of the California Current
System itself, regional actions may help to mitigate or ameliorate the effects of
OA. We provide the first known description of OA-monitoring assets and gaps off
the West Coast. Based on this analysis, we highlight monitoring gaps at the mouth
of San Francisco Bay, at Dana Point, CA and offshore from Cape Blanco, OR.

The data gap at the mouth of the San Francisco Bay is likely due to the gradient
between ocean and estuarine conditions that occurs at the Golden Gate. The
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Figure 4. Gaps in ocean acidification monitoring on the West Coast. Units represent the
effective distance (a combination of oceanographic distance and geographic distance) to the
nearest monitoring asset in kilometers. Black dots represent existing monitoring sites. Gaps
exist at Dana Point CA, at the mouth of San Francisco Bay, and offshore from Cape Blanco, OR,
as well as offshore from cruise stations.
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Figure 5. Gaps in carbonate complete ocean acidification monitoring on the West Coast.
Units represent the effective distance (a combination of oceanographic distance and geographic
distance) to the nearest monitoring asset in kilometers. Black dots represent monitoring assets
that currently are carbonate incomplete and are part of ongoing monitoring projects, and thus
could be modified to collect two carbonate measurements. Gaps exist at Santa Cruz, CA; Dana
Point, CA; and offshore from Cape Blanco, OR.
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Figure 6. Gaps in daily ocean acidification monitoring on the West Coast. Units represent the
effective distance (a combination of oceanographic distance and geographic distance) to the
nearest monitoring asset in kilometers. Black dots represent monitoring assets that are
currently collecting data daily. Onshore gaps exist at Cape Meares, OR, the mouth of the San
Francisco Bay, on the Big Sur Coast, and at the California–Oregon border. Offshore gaps are
pervasive throughout the region.
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nearest monitoring to this data gap is in Richardson Bay, which, as an estuarine
site, may not represent this region well. The nearest ocean monitoring to this region
are the Rockfish Recruitment and Ecosystem Surveys, which are cruise stations 25
km off the coast, and likely do not capture the tidal influence of the bay and delta.
This data gap could be filled by shore-side data collection offshore from Ocean
Beach in San Francisco or Muir Beach in Marin. We suspect the gap at Dana Point
is due to complex oceanography and shadowing caused by the Channel Islands, as
suggested by Figure 1. In addition, the Southern California Bight Regional
Monitoring Program through the Southern California Coastal Water Research
Project currently monitors the region with closely spaced cruise lines throughout
the Bight, which are supplemented by the NOAA OA cruises and CalCOFI cruises;
however, between these three organizations, there is no monitoring between
Oceanside, CA and north of Dana Point, CA. This gap is clear in Figure 4. We sug-
gest emphasizing this region in future cruise programs. Finally, we suspect the mon-
itoring gap offshore from Cape Blanco is due to geographic distance to monitoring
in the region. The closest cruise line to the south runs off the coast from the
California–Oregon border, and the closest cruise line to the north runs offshore
from Coos Bay, creating a distance of over 170 km between offshore measure-
ments; this is the greatest distance between cruise lines throughout the region. We
suggest that future cruises focus on collecting data in this region.

The carbonate complete monitoring gaps identified in Figure 5 could be filled by
adding an additional sensor to existing monitoring infrastructure that currently only
collects one carbonate parameter. Specifically, CalCOFI cruises could strategically
collect carbonate complete measurements on either side of the Dana Point data gap;
the CenCOOS shore-side sensor in Santa Cruz could collect carbonate complete mea-
surements to fill the carbonate complete data gap in that region, and NOAA fish
recruitment and survival surveys in Northern California and Oregon could strategi-
cally collect carbonate complete measurements to address data gaps in those regions.

The results of the high-frequency gap analysis, shown in Figure 6, illuminate the
importance of existing daily monitoring, particularly the CCE1 and CCE2 moor-
ings operated by Scripps, the OASIS moorings maintained by the Monterey Bay
Aquarium Research Institute, and the cabled and wire-following moorings offshore
from Washington and Oregon and operated by a suite of organizations including
Oregon State University, The Ocean Observatories Initiative, NOAA Pacific and
Marine Environmental Laboratory, and the Oregon Department of Fish and
Wildlife. The near-shore regions identified in Figure 6, including Cape Meares,
OR, the California–Oregon border, the mouth of the San Francisco Bay, and the
Big Sur Coast should be prioritized in future expansion of the high-frequency mon-
itoring network.

This tool can be updated with improved data inputs for the West Coast in the
future, or adapted for use in other ocean regions. As the West Coast OA-monitoring
network is grown and existing gaps are filled, this analysis can be repeated. We have
explicitly discussed steps to fill the most extreme data gaps identified in this analysis,
but this analysis reveals a gradient of data gaps across the coast. Thus, as the
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monitoring network is improved and expanded upon, lower-severity data gaps can be
filled in a triage approach, filling the less extreme gaps once the most extreme gaps have
been filled. All of the code used to conduct these analyses is freely available online at
resilienseas.github.io, and will yield reproducible results with any given set of monitor-
ing assets and corresponding spatial extent. Open science is vital for these types of
management-relevant questions, and we made our entire analysis available in an effort
to meet the goal of publicly available OA data in an ideal monitoring network,16 and
more broadly as a contribution to the open science community.

Management

Results from the gap analysis reveal several possible management actions that can be
taken to fill priority areas for additional monitoring. Because we designed our meth-
ods to identify the highest-value single additional monitoring gap to fill, even incre-
mental additions of a few sensors or new sampling sites will greatly improve the West
Coast OA-monitoring landscape. The priority areas for additional monitoring infra-
structure are at Dana Point, CA at the Golden Gate, and offshore from Cape Blanco
Oregon. We recommend that any additional monitoring in that region should collect
data at a daily frequency or greater, and should collect carbonate complete data.
High-frequency data collection in this region will provide information on short-term
changes, such as within diurnal or tidal cycles, as well as changes in response to short-
lived upwelling events,16 and maintaining existing offshore high-frequency monitoring
should be a high priority. By adding additional instrumentation to existing infrastruc-
ture at monitoring sites identified in Figure 5, existing monitoring can become carbo-
nate complete monitoring. Measuring any component of the carbonate system is
useful—measuring just pH or just pCO2 gives important insight into stressors and
habitat quality for marine organisms, and there are strong linkages between pH and
pCO2 and metrics such as growth rate and shell thickness.48 Aragonite saturation
state is the most direct link between acidification condition and biological response,
and defining aragonite saturation state constrains the entirety of the inorganic carbon
system, allowing inferences of numerous parameters that can be used to evaluate bio-
logical effects of changing ocean chemistry. Without aragonite measurements, the rest
of this information is lost—thus, an ideal monitoring network will contain carbonate
complete monitoring assets to allow users to calculate aragonite saturation state from
the data collected at each asset.

Furthermore, though research shows that marine ecosystem exposure to OA fol-
lows latitudinal gradients on the West Coast with greater exposure in higher lati-
tudes, these estimates are based on annual mean of surface aragonite saturation
state values.5 While annual means are a useful metric for long-term trends, a pri-
mary driver of OA on the West Coast is episodic upwelling, which can lower sur-
face aragonite saturation state drastically for a short time. Regional Oceanographic
Modeling System (ROMS) analyses show that coastal upwelling on the West Coast
peaks between Cape Blanco in Oregon and the Channel Islands in Southern
California.45 Thus, despite latitudinal gradients in mean annual exposure, short-
term exposure not captured in annual mean measurements is likely across a large
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section of the southern half of our study region. Experiments at shellfish hatcheries
show that a decrease in aragonite saturation state of waters in which shellfish were
spawned and reared for the first 48 hours of life is correlated with reduction in both
larval production and mid-stage growth,49 suggesting that decreases in aragonite
saturation state on the timescale of upwelling events (weeks) can have deleterious
effects on marine species. Thus, capturing short-term variability driven by upwel-
ling is essential, making it necessary to monitor for OA across our study region and
at high temporal frequencies, despite latitudinal gradients in annual mean values of
surface aragonite saturation state.

Establishing a more cohesive network by integrating these OA-monitoring
efforts from a multitude of research, agency, and nonprofit monitoring projects will
enable more accurate predictive abilities as well as more effective development and
implementation of regional management. As monitoring networks and OA predic-
tion improves, it is important that these data are used to inform policy. Further,
marine managers can be more effective in their management strategies when scien-
tists and data collectors host data publicly. With improved information about the
level of OA threat now and into the future, marine managers will be able to pursue
local mitigation efforts to increase ecosystem resilience to OA. Here, we discuss
several management actions that can be taken to decrease OA threat locally.

1. Minimize the input of local water pollutants, such as nitrogen, phosphorus,
and organic carbon into coastal watersheds: Nutrients in the form of nitrate
and phosphate can lead to eutrophication of near-shore coastal waters, cre-
ating hypoxic conditions, which often coincide with high seawater pCO2

and increased acidity.14 Thus, by reducing the drivers of localized hypoxic
events, communities can also minimize exacerbations to OA.

2. Update water quality criteria to address OA: The standards for pH have
remained unchanged since the Clean Water Act was written,50 and could
be fine-tuned to a narrower range based on biological thresholds. This
could increase the amount of coastal waters listed as ‘‘impaired’’ on the
Clean Water Act 303(d) list,50 which would raise awareness of acidic con-
ditions to managers and local decision-makers while opening up sources
of funding to ameliorate OA stress. However, there are substantial hur-
dles to changing water quality criteria, namely funding and an arduous
bureaucratic process.

3. Utilize aquatic vegetation as a tool for decreasing CO2 in local waters: The
basis of this method is to protect habitats that sustain ecological and bio-
geochemical functions. Thus, existing aquatic vegetation can be protected,
specifically in places where it may ameliorate local pH through carbon
sequestration into marine sediments.15 This strategy addresses the ecologi-
cal and biological concerns of OA. Conservation of submerged aquatic
vegetation will be important for maintaining naturally occurring OA miti-
gation. Furthermore, finding suitable areas for the restoration of submerged
aquatic vegetation will benefit OA vulnerable species and communities.
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Ultimately, the scale of this issue requires a robust contingency of stakeholders
working in unity toward common efforts and integrated approaches at the ecosys-
tem and regional scale. Local management actions, however, are an excellent start-
ing point. By improving the existing monitoring network, we can improve our
understanding of OA in space and time, better detect future changes due to
increased atmospheric CO2, and begin prioritizing when and where local manage-
ment solutions can most effectively reduce the threat of OA. Successful data-driven
management requires effective monitoring and predictive capabilities. The results
of this study present a pathway forward to meeting these goals.

Future applications

To address specific management interests, this analysis could be modified to priori-
tize monitoring in specific management zones or habitat for economically impor-
tant species. For example, if stakeholders in the West Coast Dungeness crab fishery
were interested in improving OA monitoring as it relates to the health of the fishery,
prioritization could be placed on monitoring within Dungeness crab habitat by
weighting final the effective distance more heavily within the habitat (e.g. with a
multiplier), resulting in a gap analysis of the study region that prioritizes filling gaps
within Dungeness crab habitat. This same approach could be used by management
groups across the coast, including National Marine Sanctuaries, National Parks,
marine reserves, and NOAA-designated essential fish habitat. Managers and scien-
tists have indicated the importance of having monitoring in and outside of these
managed areas,51 emphasizing the need for collaboration and cooperation across
management organizations.

In addition, since the goal of an improved OA-monitoring network is ultimately
to better predict deleterious effects of OA on marine organisms, long-term biologi-
cal monitoring paired with long-term aragonite saturation state monitoring is nec-
essary, as this combination yields information both on the level of threat, as well as
the biological response.16 While changing ocean chemistry impacts ocean biology,
changing ocean biology, in turn, impacts ocean chemistry.52 Interactions between
ocean chemistry and biology are complex and interactive, and adaptive capacity of
marine species to changing carbonate chemistry is an active field of research.48,53

This type of research is crucial to furthering the scientific understanding of spatio-
temporal trends in aragonite saturation state, biological responses to these changes,
and feedbacks between chemistry and biology. Pairing of physical and biological
monitoring is essential to understanding these links and thus in the future, this anal-
ysis could be repeated with paired biological monitoring to improve regional under-
standing of these interactions.

Finally, it is important to note that the solution this tool currently provides is a
greedy heuristic. With a given set of existing monitoring assets, the analysis reveals
the best place to put the next monitoring asset. The result is designed to inform the
selection of additional sites for monitoring, not the wholesale design of an optimal
coast-wide monitoring network. However, our method of quantifying gaps in OA
monitoring can be adapted to design a monitoring network from the ground up.
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This could be done by setting an initial number of monitoring points and using our
framework to analyze the gaps in the randomly designed network. To optimize the
network, this would be repeated iteratively, similarly to the process MARXAN uses
when designing reserve networks,54 though in this case, the objective function would
be the integrated gap value of the entire study region. Thus, after generating a given
number of random monitoring network designs—MARXAN guidance documents
recommend using a minimum of 100,000 iterations54—the design with the optimum
overall coverage would be selected. Similarly, if the user wanted to preserve certain
monitoring sites that had external reasons to be there (for example, monitoring at
shellfish hatcheries or long-term ecological research sites), these chosen locations
could be used along with any number of other random sites, and the same process
carried out. The end result would be a monitoring network that contained the pre-
served sites, with an optimal network designed around them. This would be a novel
and powerful way to approach OA-monitoring network design in the ocean.

Limitations

Since empirical relationships for estimating aragonite saturation state from tem-
perature and dissolved oxygen have not been developed for estuarine regions, we
were not able to include these regions in our analysis. This is a significant limita-
tion, because estuarine environments are often subject to industrial sources of nutri-
ents and carbon, and aragonite saturation state in these places is often very low.55

Monitoring of these trends in estuaries is essential, and we recommend that this
analysis be repeated at a point in the future when empirical relationships to esti-
mate aragonite saturation state in estuaries exist.

The existing monitoring inventory does not include information about the
depths of data collection. Seawater in the California Current System is most under-
saturated at depth.18 Though many deep water organisms can survive in more
acidic conditions,56 deep water shoals during upwelling events, potentially causing
vertical habitat compression for shallow water organisms, which have not devel-
oped the same tolerance for acidic water,57 making it important to monitor at a
variety of depths in addition to the surface. Ultimately, the OAH inventory will
contain information on depth, at which point the framework of this analysis can be
reapplied to find gaps for different depth strata.

This analysis assumes that OA and its variability can be predicted by tempera-
ture and dissolved oxygen, and assumes that empirical models developed up to a
decade ago still accurately describe OA conditions.33,34 If empirical models are
recalibrated with new values for coefficients and parameters in the future, this anal-
ysis could be repeated to reflect most recent available models.

Conclusion

OA ranks among the top threats to coastal marine ecosystems in this century.2

Without accurate data on acidification conditions, it is difficult to detect changes,
predict future impacts, and make management decisions. Coordinating monitoring
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efforts to collect that data, and prioritizing new ones based on a strategic optimiza-
tion framework, will allow marine managers to address OA as efficiently as possi-
ble with limited resources. Results show that data collection around Puget Sound
should be a priority into the future. We hope that this tool helps managers and
scientists make challenging but data-driven choices about where to invest in ocean
monitoring. We also hope that the improved monitoring network we describe here
will be used to improve predictive capacity and thus enable strategic local manage-
ment strategies to reduce OA impacts on a regional scale.
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10. Bednaršek N, Feely RA, Beck MW, et al. El Niño-related thermal stress coupled with

upwelling-related ocean acidification negatively impacts cellular to population-level

responses in pteropods along the California Current system with implications for

increased bioenergetic costs. Front Mar Sci 2018; 5: 486.

11. Narita D, Rehdanz K and Tol RSJ. Economic costs of ocean acidification: a look into

the impacts on global shellfish production. Clim Change 2012; 113: 1049–1063.

12. Barton A, Waldbusser GG, Feely RA, et al. Impacts of coastal acidification on the

Pacific Northwest shellfish industry and adaptation strategies implemented in response.

Oceanography 2015; 28: 146–159.

13. Lynn K, Daigle J, Hoffman J, et al. The impacts of climate change on tribal traditional

foods. Clim Change 2013; 120: 545–556.

14. Breitburg DL, Salisbury JM, Bernhard JM, et al. And on top of all that... coping with

ocean acidification in the midst of many stressors. Oceanography 2015; 28: 48–61.

15. Duarte CM, Middelburg JJ and Caraco N. Major role of marine vegetation on the

oceanic carbon cycle. Biogeosciences Discuss 2004; 1: 659–679.

16. McLaughlin K, Weisberg S, Dickson A, et al. Core principles of the California Current

acidification network: linking chemistry, physics, and ecological effects. Oceanography

2015; 25: 160–169.

17. State of California, Department of Natural Resources, Marine Research Committee.

California cooperative sardine research program: progress report 1950. CalCOFI reports 1.

Available at: https://www.calcofi.org/publications/calcofireports/v01/CalCOFI_Rpt_Vol_

01_1950.pdf

18. Feely RA, Alin SR, Carter B, et al. Chemical and biological impacts of ocean

acidification along the west coast of North America. Estuar Coast Shelf Sci 2016; 183:

260–270.

19. Siedlecki SA, Kaplan IC, Hermann AJ, et al. Experiments with Seasonal Forecasts of

ocean conditions for the Northern region of the California Current upwelling system.

Sci Rep 2016; 6: 27203.

20. Hauri C, Gruber N, Vogt M, et al. Spatiotemporal variability and long-term trends of

ocean acidification in the California Current System. Biogeosciences 2013; 10: 193–216.

24 Science Progress

https://www.calcofi.org/publications/calcofireports/v01/CalCOFI_Rpt_Vol_01_1950.pdf
https://www.calcofi.org/publications/calcofireports/v01/CalCOFI_Rpt_Vol_01_1950.pdf


21. Mofarrah A and Husain T. A holistic approach for optimal design of air quality

monitoring network expansion in an urban area. Atmos Environ 2010; 44: 432–440.

22. Telci IT, Nam K, Guan J, et al. Optimal water quality monitoring network design for

river systems. J Environ Manage 2009; 90(10): 2987–2998.

23. Bretherton FP, Davis RE and Fandry CB. A technique for objective analysis and design

of oceanographic experiments applied to MODE-73. Deep Sea Res Oceanogr Abstr

1976; 23: 559–582.

24. Berliner ML, Lu Z-Q and Snyder C. Statistical design for adaptive weather

observations. J Atmos Sci 1999; 56: 2536–2552.

25. Kot CY, Fujioka E, Hazen LJ, et al. Spatio-temporal gap analysis of OBIS-SEAMAP

project data: assessment and way forward. PLoS ONE 2010; 5(9): e12990.

26. Asch RG and Turgeon DD. Detection of gaps in the spatial coverage of coral reef

monitoring projects in the US Caribbean and Gulf of Mexico. Rev Biol Trop 2003;

51(Suppl. 4): 127–140.

27. Frolov S, Kudela RM and Bellingham JG. Monitoring of harmful algal blooms in the

era of diminishing resources: a case study of the U.S. West Coast. Harmful Algae 2013;

21–22: 1–12.

28. Hofmann GE and Washburn L. SBC LTER: ocean: time-series: mid-water SeaFET pH

and CO2 system chemistry with surface and bottom Dissolved Oxygen at Mohawk

Reef(MKO), ongoing since 2012-01-11, https://doi.org/10.6073/pasta/7d5f084a03ea3

06540f357812e3a0e27 (2018, accessed 22 December 2019).

29. Hofmann GE and Washburn L. SBC LTER: ocean: time-series: mid-water SeaFET pH

and CO2 system chemistry with surface and bottom Dissolved Oxygen at Santa Barbara

Harbor/Stearns Wharf(SBH), ongoing since 2012-09-15, https://doi.org/10.6073/pasta/

d95118a18b7124501a85962e8a8147b4 (2018, accessed 22 December 2019).

30. Hofmann G and Washburn L. SBC LTER: ocean: time-series: mid-water SeaFET and

CO2 system chemistry at Alegria (ALE), ongoing since 2011-06-21, 2018, https://

doi.org/10.6073/pasta/1bd1491475ff6afee4be10d054d1ef0b

31. Hofmann GE and Washburn L. SBC LTER: ocean: time-series: mid-water SeaFET pH

and CO2 system chemistry with surface and bottom Dissolved Oxygen at Arroyo

Quemado Reef(ARQ), ongoing since 2012-07-30, 2018, https://doi.org/10.6073/pasta/

c9ba145fbce497008d1f6db809b70aac

32. White WB and Bernstein RL. Design of an oceanographic network in the midlatitude

North Pacific. J Phys Oceanogr 1979; 9: 592–606.

33. Juranek LW, Feely RA, Peterson WT, et al. A novel method for determination of

aragonite saturation state on the continental shelf of central Oregon using multi-

parameter relationships with hydrographic data. Geophys Res Lett 2009; 36: 4–9.

34. Alin SR, Feely RA, Dickson AG, et al. Robust empirical relationships for estimating

the carbonate system in the southern California Current System and application to

CalCOFI hydrographic cruise data (2005–2011). J Geophys Res Ocean 2012; 117:

C05033.

35. Tyberghein L, Verbruggen H, Pauly K, et al. Bio-ORACLE: a global environmental

dataset for marine species. Glob Ecol Biogeogr 2011; 21: 272–281.

36. Bruno JF, Bates AE, Cacciapaglia C, et al. Climate change threatens the world’s marine

protected areas. Nat Clim Chang 2018; 8: 499–503.

37. Feldman, G.C. & McClain, C.R. (2010) OceanColor web (ed. by N. Kuring, S.W.

Bailey, B.F. Franz, G. Meister, P.J. Werdell and R.E. Eplee). NASA Goddard Space

Taylor-Burns et al. 25

https://doi.org/10.6073/pasta/7d5f084a03ea306540f357812e3a0e27
https://doi.org/10.6073/pasta/7d5f084a03ea306540f357812e3a0e27
https://doi.org/10.6073/pasta/d95118a18b7124501a85962e8a8147b4
https://doi.org/10.6073/pasta/d95118a18b7124501a85962e8a8147b4
https://doi.org/10.6073/pasta/1bd1491475ff6afee4be10d054d1ef0b
https://doi.org/10.6073/pasta/1bd1491475ff6afee4be10d054d1ef0b
https://doi.org/10.6073/pasta/c9ba145fbce497008d1f6db809b70aac
https://doi.org/10.6073/pasta/c9ba145fbce497008d1f6db809b70aac


Flight Center, Greenbelt, MD. Available at: http://oceancolor.gsfc.nasa.gov/ (accessed

January 2020).

38. Boyer, T.P., Antonov, J.I., Baranova, O.K., Garcia, H.E., Johnson, D.R., Locarnini,

R.A., Mishonov, A.V., O brien, T.D., Seidov, D., Smolyar, I.V. & Zweng, M.M. (2009)

World ocean database 2009. US Government Printing Office, Washington, DC.l

39. Troupin C, Barth A, Sirjacobs D, et al. Generation of analysis and consistent error

fields using the Data Interpolating Variational Analysis (DIVA). Ocean Model 2012;

52–53: 90–101.

40. Troupin C, MacHı́n F, Ouberdous M, et al. High-resolution climatology of the

northeast Atlantic using Data-Interpolating Variational Analysis (DIVA). J Geophys

Res Ocean 2010; 115: 1–20.

41. Beckers JM, Barth A, Troupin C, et al. Approximate and efficient methods to assess

error fields in spatial gridding with Data Interpolating Variational Analysis (DIVA). J

Atmos Ocean Technol 2014; 31: 515–530.

42. Kara AB, Rochford PA and Hurlburt HE. An optimal definition for ocean mixed layer

depth. J Geophys Res Ocean 2000; 105: 16803–16821.

43. R Core Team. R: A Language and environment for statistical computing. 2017.

Available at: https://www.r-project.org/

44. Assis J, Tyberghein L, Bosch S, et al. Bio-ORACLE v2.0: extending marine data layers

for bioclimatic modelling. Glob Ecol Biogeogr 2018; 27: 277–284.

45. Jacox MG, Moore AM, Edwards CA, et al. Spatially resolved upwelling in the

California Current System. Geophys Res Lett 2014; 41: 3189–3196.

46. Miles RE and Maillardet RJ. The basic structures of voronoi and generalized voronoi

polygons. J Appl Probab 1982; 19: 97–111.

47. Curran PJ. The semivariogram in remote sensing: an introduction. Remote Sens Environ

1988; 24: 493–507.

48. Wong JM, Kozal LC, Leach TS, et al. Transgenerational effects in an ecological

context: conditioning of adult sea urchins to upwelling conditions alters maternal

provisioning and progeny phenotype. J Exp Mar Bio Ecol 2019; 517: 65–77.

49. Barton A, Hales B, Waldbusser GG, et al. The Pacific oyster, Crassostrea gigas, shows

negative correlation to naturally elevated carbon dioxide levels: implications for near-

term ocean acidification effects. Limnol Oceanogr 2012; 57: 698–710.

50. 33 U.S.C. §1251 et seq. 1972. United States of America.

51. Pollnac R, Christie P, Cinner JE, et al. Marine reserves as linked social—ecological

systems. PNAS 2010; 107: 43–46.

52. Duarte CM, Hendriks IE, Moore TS, et al. Is ocean acidification an open-ocean

syndrome? Understanding anthropogenic impacts on seawater pH. Estuaries Coast

2013; 36: 221–236.

53. Hoshijima U and Hofmann GE. Variability of seawater chemistry in a kelp forest

environment is linked to in situ transgenerational effects in the purple sea urchin,

Strongylocentrotus purpuratus. Front Environ Sci 2019; 6: 62.

54. Game ET and Grantham HS. Marxan user manual: for Marxan version 1.8.10, 2008,

http://courses.washington.edu/cfr590/projectreadings/marxan-manual-1.8.10.pdf

55. Feely RA, Alin SR, Newton J, et al. The combined effects of ocean acidification,

mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuar

Coast Shelf Sci 2010; 88: 442–449.

56. Lebrato M, Andersson AJ, Ries JB, et al. Benthic marine calcifiers coexist with CaCO3-

undersaturated seawater worldwide. Global Biogeochem Cycles 2016; 30: 1038–1053.

26 Science Progress

http://oceancolor.gsfc.nasa.gov/
https://www.r-project.org/
http://courses.washington.edu/cfr590/projectreadings/marxan-manual-1.8.10.pdf
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