Development and application of foraminiferal carbonate system proxies to quantify ocean acidification in the California Current

Published 22 February 2017

 

The oceanic uptake of anthropogenic carbon has mitigated climate change, but has also resulted in a global average 0.1 decline in surface ocean pH over 20th century known as ocean acidification. The parallel reduction in carbonate ion concentration ([CO32-]) and the saturation state of seawater (Ω) has caused many major calcium carbonate-secreting organisms such as planktonic foraminifera to exhibit impaired calcification. We develop proxy calibrations and down core records that use calcification and geochemical characteristics of planktonic foraminifera as proxies for the marine carbonate system. This study focuses specifically on the surface ocean chemistry of the California Current Ecosystem (CCE), which has been identified as a region of rapidly progressing ocean acidification due to natural upwelling processes and the low buffering capacity of these waters. The calibration portion of this study uses marine sediments collected by the Santa Barbara Basin (SBB), California sediment-trapping program located in the central region of the CCE. We calibrate the relationships of Globigerina bulloides calcification intensity to [CO3 2-] and the B/Ca ratios of G. bulloides, Neogloboquadrina dutertrei and Neogloboquadrina incompta shells to Ω calcite using in situ measurements and model simulations of these independent variables. By applying these proxy methods to down core, our records from the SBB indicate a 20% reduction in foraminiferal calcification since ~1900, translating to a 35% decline in [CO 32-] in the CCE over this period. Our high-resolution calcification record also reveals a substantial interannual to decadal modulation of ocean acidification in the CCE related to the sign of Pacific Decadal Oscillation and El Niño Southern Oscillation. In the future we can expect these climatic modes to both enhance and moderate anthropogenic ocean acidification. Based on our historic record, we predict that if atmospheric CO2 reaches 540 ppm by the year 2100 as predicted by a conservative CO3 pathway, [CO32-] will experience a net reduction of 55%, resulting in at least a 30% reduction in calcification of planktonic foraminifera that will likely be mirrored by other adversely affected marine calcifiers.

Osborne E. B., 2016. Development and application of foraminiferal carbonate system proxies to quantify ocean acidification in the California Current.PhD thesis, University of South Carolina, 182 p. Thesis (restricted access).