Resistance among wild invertebrate populations to recurrent estuarine acidification

Acid sulfate soils (ASS), which occur on floodplains worldwide, pose a significant threat to estuarine ecosystems. In laboratory and field experiments, naïve calcifying organisms that are exposed for even short periods (1-2 mo) to runoff from ASS suffer 80 % mortality and slowed growth. Based on these observations we expected that sampling of wild oyster, gastropod and crab populations at sites close to and away from drains discharging ASS runoff would reveal more depauperate populations, of sparser and smaller-sized individuals at the more acidified sites. Sampling within three estuaries of New South Wales, Australia, confirmed that the oyster Saccostrea glomerata and gastropods (primarily Bembicium auratum) were less abundant at ASS-affected than reference sites. Nevertheless, crab abundances did not differ between the acidified and reference sites and impacts to bivalves and gastropods were far smaller than predicted. Although at ASS-affected sites gastropod populations were dominated by smaller individuals than at reference sites, oyster populations were skewed towards larger individuals. Even at ASS-affected sites, oyster and gastropod abundances were within the range encountered in estuaries that are not influenced by ASS runoff. Behaviour, long-term physiological acclimation or genetic selection may be responsible for differences in the responses of wild and naïve macroinvertebrates to acidification. Alternatively, wild populations may exhibit some recovery between the rainfall events that transport ASS runoff into estuaries, despite the persistently lower pH near outflow drains. Irrespective, this study suggests that at the population level, calcifying organisms display a certain degree of natural resistance to recurrent disturbance from ASS runoff.

Amaral V., Cabral H. N., & Bishop M. J., in press. Resistance among wild invertebrate populations to recurrent estuarine acidification. Estuarine, Coastal and Shelf Science doi:10.1016/j.ecss.2011.05.024. Article (subscription required).